MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Secondary Structure in Enzyme‐Inspired Polymer Catalysts Impacts Water Oxidation Efficiency

Author(s)
Sedenho, Graziela C; Nascimento, Steffane Q; Zamani, Marjon; Crespilho, Frank N; Furst, Ariel L
Thumbnail
DownloadPublished version (1.703Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Protein structure plays an essential role on their stability, functionality, and catalytic activity. In this work, the interplay between the β-sheet structure and its catalytic implications to the design of enzyme-inspired materials is investigated. Here, inspiration is drawn from the active sites and β-sheet rich structure of the highly efficient multicopper oxidase (MCO) to engineer a bio-inspired electrocatalyst for water oxidation utilizing the abundant metal, copper. Copper ions are coordinated to poly-histidine (polyCuHis), as they are in MCO active sites. The resultant polyCuHis material effectively promotes water oxidation with low overpotentials (0.15 V) in alkaline systems. This activity is due to the 3D structure of the poly-histidine backbone. By increasing the prevalence of β-sheet structure and decreasing the random coil nature of the polyCuHis secondary structures, this study is able to modulates the electrocatalytic activity of this material is modulated, shifting it toward water oxidation. These results highlight the crucial role of the local environment at catalytic sites for efficient, energy-relevant transformations. Moreover, this work highlights the importance of conformational structure in the design of scaffolds for high-performance electrocatalysts.
Date issued
2024-07
URI
https://hdl.handle.net/1721.1/158302
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Advanced Science
Publisher
Wiley
Citation
Sedenho, Graziela C, Nascimento, Steffane Q, Zamani, Marjon, Crespilho, Frank N and Furst, Ariel L. 2024. "Secondary Structure in Enzyme‐Inspired Polymer Catalysts Impacts Water Oxidation Efficiency." Advanced Science, 11 (25).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.