MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend

Author(s)
Chen, Gang; Lu, Jian; Frierson, Dargan M. W.
Thumbnail
Downloadclim-2008jcli2306.1.pdf (3.158Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The extratropical annular-mode-like atmospheric responses to ENSO and global warming and the internal variability of annular modes are associated with similar, yet distinct, dynamical characteristics. In particular, La Niña, global warming, and the positive phase of annular modes are all associated with a poleward shift of midlatitude jet streams and surface westerlies. To improve understanding of these phenomena, the authors identify and compare patterns of interannual variability and global warming trends in the midlatitude surface westerlies and the space–time spectra of associated eddy momentum fluxes by analyzing simulations of the present climate in an atmosphere-only climate model, in which the ENSO-induced extratropical response is validated with that in reanalysis data, and by projection of future climate changes using a coupled atmosphere–ocean model. While the response to ENSO is consistent with the refraction of midlatitude eddies due to subtropical wind anomalies, the interannual internal variability of the annular modes marks a change in the eastward propagation speed of midlatitude eddies. In response to global warming, the dominant eddies exhibit a trend toward faster eddy phase speeds in both hemispheres, in a manner similar to the positive phase of interannual internal variability. These diagnoses suggest that the annular mode trend due to greenhouse gas increases may be more related to extratropical processes, especially in the upper troposphere/lower stratosphere, rather than being forced from the deep tropics.
Date issued
2008-11-15
URI
https://hdl.handle.net/1721.1/158906
Department
Massachusetts Institute of Technology. Program in Atmospheres, Oceans, and Climate
Journal
Journal of Climate
Publisher
American Meteorological Society
Citation
Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend. J. Climate, 21, 5942–5959.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.