MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diffusion and Percolation: How COVID-19 Spread Through Populations

Author(s)
Harris, Jeffrey E.
Thumbnail
Downloadpopulations-01-00005.pdf (10.53Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
I rely on the key concepts of diffusion and percolation to characterize the sequential but overlapping phases of the spread of infection through entire populations during the first year of the COVID-19 pandemic. Data from Los Angeles County demonstrate an extended initial diffusion phase propelled by radial geographic spread, followed by percolation within hotspots fueled by the presence of multigenerational households. Data from New York City, by contrast, reveal rapid initial diffusion along a unique, extensive subway network. Subsequent percolation within multiple hotspots, similarly powered by a high density of multigenerational households, exerted a positive feedback effect that further enhanced diffusion. Data from Florida counties support the generality of the phenomenon of viral transmission from more mobile, younger individuals to less mobile, older individuals. Data from the South Brooklyn hotspot reveal the limitations of some forms of government regulation in controlling mobility patterns that were critical to the continued percolation of the viral infection. Data from a COVID-19 outbreak at the University of Wisconsin—Madison demonstrate the critical role of a cluster of off-campus bars as an attractor for the continued percolation of infection. The evidence also demonstrates the efficacy of quarantine as a control strategy when the hotspot is contained and well identified.
Date issued
2025-02-20
URI
https://hdl.handle.net/1721.1/158991
Department
Massachusetts Institute of Technology. Department of Economics
Journal
Populations
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Harris, J.E. Diffusion and Percolation: How COVID-19 Spread Through Populations. Populations 2025, 1, 5.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.