MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iterative regularization for low complexity regularizers

Author(s)
Molinari, Cesare; Massias, Mathurin; Rosasco, Lorenzo; Villa, Silvia
Thumbnail
Download211_2023_1390_ReferencePDF.pdf (1.256Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Iterative regularization exploits the implicit bias of optimization algorithms to regularize ill-posed problems. Constructing algorithms with such built-in regularization mechanisms is a classic challenge in inverse problems but also in modern machine learning, where it provides both a new perspective on algorithms analysis, and significant speed-ups compared to explicit regularization. In this work, we propose and study the first iterative regularization procedure with explicit computational steps able to handle biases described by non smooth and non strongly convex functionals, prominent in low-complexity regularization. Our approach is based on a primal-dual algorithm of which we analyze convergence and stability properties, even in the case where the original problem is unfeasible. The general results are illustrated considering the special case of sparse recovery with the ℓ 1 penalty. Our theoretical results are complemented by experiments showing the computational benefits of our approach.
Date issued
2024-02-10
URI
https://hdl.handle.net/1721.1/159018
Department
Center for Brains, Minds, and Machines
Journal
Numerische Mathematik
Publisher
Springer Berlin Heidelberg
Citation
Molinari, C., Massias, M., Rosasco, L. et al. Iterative regularization for low complexity regularizers. Numer. Math. 156, 641–689 (2024).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.