MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Modular Invariance of Quantum Affine W-Algebras

Author(s)
Kac, Victor G.; Wakimoto, Minoru
Download220_2024_5223_ReferencePDF.pdf (Embargoed until: 2026-01-18, 690.4Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We find modular transformations of normalized characters for the following W-algebras: (a) W k min ( g ) , where g = D n ( n ≥ 4 ) , or E 6 , E 7 , E 8 , and k is a negative integer ≥ - 2 , or ≥ - h ∨ 6 - 1 , respectively; (b) quantum Hamiltonian reduction of the g ^ -module L ( k Λ 0 ) , where g is a simple Lie algebra, f is its non-zero nilpotent element, and k is a principal admissible level with the denominator u > θ ( x ) , where 2x is the Dynkin characteristic of f, and θ is the highest root of g . We prove that these vertex algebras are modular invariant. A conformal vertex algebra V is called modular invariant if its character t r V q L 0 - c / 24 converges to a holomorphic modular function in the complex upper half-plane on a congruence subgroup. We find explicit formulas for their characters. Modular invariance of V is important since, in particular, conjecturally it implies that V is simple, and that V is rational, provided that it is lisse.
Date issued
2025-01-18
URI
https://hdl.handle.net/1721.1/159039
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications in Mathematical Physics
Publisher
Springer Berlin Heidelberg
Citation
Kac, V.G., Wakimoto, M. On Modular Invariance of Quantum Affine W-Algebras. Commun. Math. Phys. 406, 44 (2025).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.