Show simple item record

dc.contributor.authorAzagra, Daniel
dc.contributor.authorDrake, Marjorie
dc.contributor.authorHajłasz, Piotr
dc.date.accessioned2025-04-04T19:39:23Z
dc.date.available2025-04-04T19:39:23Z
dc.date.issued2024-04-03
dc.identifier.urihttps://hdl.handle.net/1721.1/159043
dc.description.abstractAbstract We prove that if u : R n → R is strongly convex, then for every ε > 0 there is a strongly convex function v ∈ C 2 ( R n ) such that | { u ≠ v } | < ε and ∥ u − v ∥ ∞ < ε .en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00222-024-01252-6en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleC2-Lusin approximation of strongly convex functionsen_US
dc.typeArticleen_US
dc.identifier.citationAzagra, D., Drake, M. & Hajłasz, P. C2-Lusin approximation of strongly convex functions. Invent. math. 236, 1055–1082 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalInventiones mathematicaeen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-03-27T13:46:32Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2025-03-27T13:46:32Z
mit.journal.volume236en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record