dc.contributor.author | Azagra, Daniel | |
dc.contributor.author | Drake, Marjorie | |
dc.contributor.author | Hajłasz, Piotr | |
dc.date.accessioned | 2025-04-04T19:39:23Z | |
dc.date.available | 2025-04-04T19:39:23Z | |
dc.date.issued | 2024-04-03 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/159043 | |
dc.description.abstract | Abstract We prove that if u : R n → R is strongly convex, then for every ε > 0 there is a strongly convex function v ∈ C 2 ( R n ) such that | { u ≠ v } | < ε and ∥ u − v ∥ ∞ < ε . | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00222-024-01252-6 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | C2-Lusin approximation of strongly convex functions | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Azagra, D., Drake, M. & Hajłasz, P. C2-Lusin approximation of strongly convex functions. Invent. math. 236, 1055–1082 (2024). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Inventiones mathematicae | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2025-03-27T13:46:32Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature | |
dspace.embargo.terms | Y | |
dspace.date.submission | 2025-03-27T13:46:32Z | |
mit.journal.volume | 236 | en_US |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |