MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Golden lichtenberg algorithm: a fibonacci sequence approach applied to feature selection

Author(s)
Pereira, João L. J.; Francisco, Matheus B.; Ma, Benedict J.; Gomes, Guilherme F.; Lorena, Ana C.
Thumbnail
Download521_2024_10155_ReferencePDF.pdf (Embargoed until: 2025-08-13, 21.43Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Computational and technological advancements have led to an increase in data generation and storage capacity. Many annotated datasets have been used to train machine learning models for predictive tasks. Feature selection (FS) is a combinatorial binary optimization problem that arises from a need to reduce dataset dimensionality by finding the subset of features with maximum predictive accuracy. While different methodologies have been proposed, metaheuristics adapted to binary optimization have proven to be reliable and efficient techniques for FS. This paper applies the first and unique population-trajectory metaheuristic, the Lichtenberg algorithm (LA), and enhances it with a Fibonacci sequence to improve its exploration capabilities in FS. Substituting the random scales that controls the Lichtenberg figures' size and the population distribution in the original version by a sequence based on the golden ratio, a new optimal exploration–exploitation LF's size decay is presented. The new few hyperparameters golden Lichtenberg algorithm (GLA), LA, and eight other popular metaheuristics are then equipped with the v-shaped transfer function and associated with the K-nearest neighbor classifier in the search of the optimized feature subsets through a double cross-validation experiment method on 15 UCI machine learning repository datasets. The binary GLA selected reduced subsets of features, leading to the best predictive accuracy and fitness values at the lowest computational cost.
Date issued
2024-08-13
URI
https://hdl.handle.net/1721.1/159076
Department
Massachusetts Institute of Technology. Center for Transportation & Logistics
Journal
Neural Computing and Applications
Publisher
Springer London
Citation
Pereira, J.L.J., Francisco, M.B., Ma, B.J. et al. Golden lichtenberg algorithm: a fibonacci sequence approach applied to feature selection. Neural Comput & Applic 36, 20493–20511 (2024).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.