MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiplicity one for min–max theory in compact manifolds with boundary and its applications

Author(s)
Sun, Ao; Wang, Zhichao; Zhou, Xin
Thumbnail
Download526_2024_2669_ReferencePDF.pdf (906.0Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We prove the multiplicity one theorem for min–max free boundary minimal hypersurfaces in compact manifolds with boundary of dimension between 3 and 7 for generic metrics. To approach this, we develop existence and regularity theory for free boundary hypersurface with prescribed mean curvature, which includes the regularity theory for minimizers, compactness theory, and a generic min–max theory with Morse index bounds. As applications, we construct new free boundary minimal hypersurfaces in the unit balls in Euclidean spaces and self-shrinkers of the mean curvature flows with arbitrarily large entropy.
Date issued
2024-03-07
URI
https://hdl.handle.net/1721.1/159154
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Calculus of Variations and Partial Differential Equations
Publisher
Springer Berlin Heidelberg
Citation
Sun, A., Wang, Z. & Zhou, X. Multiplicity one for min–max theory in compact manifolds with boundary and its applications. Calc. Var. 63, 70 (2024).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.