MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large exchange bias enhancement and control of ferromagnetic energy landscape by solid-state hydrogen gating

Author(s)
Hasan, M Usama; Kossak, Alexander E; Beach, Geoffrey SD
Thumbnail
DownloadPublished version (1.335Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Voltage control of exchange bias is desirable for spintronic device applications, however dynamic modulation of the unidirectional coupling energy in ferromagnet/antiferromagnet bilayers has not yet been achieved. Here we show that by solid-state hydrogen gating, perpendicular exchange bias can be enhanced by > 100% in a reversible and analog manner, in a simple Co/Co0.8Ni0.2O heterostructure at room temperature. We show that this phenomenon is an isothermal analog to conventional field-cooling and that sizable changes in average coupling energy can result from small changes in AFM grain rotatability. Using this method, we show that a bi-directionally stable ferromagnet can be made unidirectionally stable, with gate voltage alone. This work provides a means to dynamically reprogram exchange bias, with broad applicability in spintronics and neuromorphic computing, while simultaneously illuminating fundamental aspects of exchange bias in polycrystalline films.
Date issued
2023-12-21
URI
https://hdl.handle.net/1721.1/159343
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Hasan, M.U., Kossak, A.E. & Beach, G.S.D. Large exchange bias enhancement and control of ferromagnetic energy landscape by solid-state hydrogen gating. Nat Commun 14, 8510 (2023).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.