Show simple item record

dc.contributor.authorRebentrost, Patrick
dc.contributor.authorLloyd, Seth
dc.date.accessioned2025-06-26T20:53:56Z
dc.date.available2025-06-26T20:53:56Z
dc.date.issued2024-08-12
dc.identifier.urihttps://hdl.handle.net/1721.1/159808
dc.description.abstractWe present a quantum algorithm for portfolio optimization. We discuss the market data input of asset prices, the processing of such data via quantum operations, and the output of financially relevant results. Given quantum access to a historical record of asset returns, the algorithm determines the optimal risk-return tradeoff curve and allows one to sample from the optimal portfolio. The algorithm can in principle attain a run time of poly ( log ( N ) ) , where N is the number of assets. Direct classical algorithms for determining the risk-return curve and other properties of the optimal portfolio take time poly ( N ) and we discuss potential quantum speedups in light of efficient classical sampling approaches.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s13218-024-00870-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleQuantum Computational Finance: Quantum Algorithm for Portfolio Optimizationen_US
dc.typeArticleen_US
dc.identifier.citationRebentrost, P., Lloyd, S. Quantum Computational Finance: Quantum Algorithm for Portfolio Optimization. Künstl Intell 38, 327–338 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.relation.journalKI - Künstliche Intelligenzen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-03-27T13:49:55Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany and Gesellschaft für Informatik e.V.
dspace.embargo.termsY
dspace.date.submission2025-03-27T13:49:55Z
mit.journal.volume38en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record