MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Microbial Electrochemical Technology to Detect and Degrade Organophosphate Pesticides

Author(s)
Karbelkar, Amruta A; Reynolds, Erin E; Ahlmark, Rachel; Furst, Ariel L
Thumbnail
DownloadPublished version (2.432Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivatives https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Organophosphate (OP) pesticides cause hundreds of illnesses and deaths annually. Unfortunately, exposures are often detected by monitoring degradation products in blood and urine, with few effective methods for detection and remediation at the point of dispersal. We have developed an innovative strategy to remediate these compounds: an engineered microbial technology for the targeted detection and destruction of OP pesticides. This system is based upon microbial electrochemistry using two engineered strains. The strains are combined such that the first microbe (E. coli) degrades the pesticide, while the second (S. oneidensis) generates current in response to the degradation product without requiring external electrochemical stimulus or labels. This cellular technology is unique in that the E. coli serves only as an inert scaffold for enzymes to degrade OPs, circumventing a fundamental requirement of coculture design: maintaining the viability of two microbial strains simultaneously. With this platform, we can detect OP degradation products at submicromolar levels, outperforming reported colorimetric and fluorescence sensors. Importantly, this approach affords a modular, adaptable strategy that can be expanded to additional environmental contaminants.
Date issued
2021-10-27
URI
https://hdl.handle.net/1721.1/159817
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Center for Environmental Health Sciences
Journal
ACS Central Science
Publisher
American Chemical Society
Citation
Amruta A. Karbelkar, Erin E. Reynolds, Rachel Ahlmark, and Ariel L. Furst. ACS Central Science 2021 7 (10), 1718-1727.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.