Show simple item record

dc.contributor.authorDowns, Charles
dc.contributor.authorSluijs, P. M. v. d.
dc.contributor.authorCornelissen, Sandra A. P.
dc.contributor.authorNijenhuis, Frank t.
dc.contributor.authorZwam, Wim H. v.
dc.contributor.authorGopalakrishnan, Vivek
dc.contributor.authorZhang, Xucong
dc.contributor.authorSu, Ruisheng
dc.contributor.authorWalsum, Theo v.
dc.date.accessioned2025-07-30T17:22:08Z
dc.date.available2025-07-30T17:22:08Z
dc.date.issued2025-05-23
dc.identifier.urihttps://hdl.handle.net/1721.1/162164
dc.description.abstractPurpose Stroke remains a leading cause of morbidity and mortality worldwide, despite advances in treatment modalities. Endovascular thrombectomy (EVT), a revolutionary intervention for ischemic stroke, is limited by its reliance on 2D fluoroscopic imaging, which lacks depth and comprehensive vascular detail. We propose a novel AI-driven pipeline for 3D CTA to 2D DSA cross-modality registration, termed DeepIterReg. Methods The proposed pipeline integrates neural network-based initialization with iterative optimization to align pre-intervention and peri-intervention data. Our approach addresses the challenges of cross-modality alignment, particularly in scenarios involving limited shared vascular structures, by leveraging synthetic data, vein-centric anchoring, and differentiable rendering techniques. Results We assess the efficacy of DeepIterReg through quantitative analysis of capture ranges and registration accuracy. Results show that our method can accurately register 70% of a test set of 20 patients and can improve capture ranges when performing an initial pose estimation using a convolutional neural network. Conclusions DeepIterReg demonstrates promising performance for 3D-to-2D stroke intervention image registration, potentially aiding clinicians by improving spatial understanding during EVT and reducing dependence on manual adjustments.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11548-025-03412-2en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleImproving automatic cerebral 3D-2D CTA-DSA registrationen_US
dc.typeArticleen_US
dc.identifier.citationDowns, C., Sluijs, P.M.v.d., Cornelissen, S.A.P. et al. Improving automatic cerebral 3D-2D CTA-DSA registration. Int J CARS 20, 1451–1460 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalInternational Journal of Computer Assisted Radiology and Surgeryen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-07-18T15:32:15Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2025-07-18T15:32:15Z
mit.journal.volume20en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record