MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Concavity for elliptic and parabolic equations in locally symmetric spaces with nonnegative curvature

Author(s)
Aryan, Shrey; Law, Michael B.
Thumbnail
Download526_2025_Article_3049.pdf (3.085Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We establish a concavity principle for solutions to elliptic and parabolic equations on locally symmetric spaces with nonnegative sectional curvature, extending the results of Langford and Scheuer (Commun Partial Differ Equ 46(6):1005–1016, 2021). To the best of our knowledge, this is the first general concavity principle established on spaces with non-constant sectional curvature.
Date issued
2025-07-10
URI
https://hdl.handle.net/1721.1/162280
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Calculus of Variations and Partial Differential Equations
Publisher
Springer Berlin Heidelberg
Citation
Aryan, S., Law, M.B. Concavity for elliptic and parabolic equations in locally symmetric spaces with nonnegative curvature. Calc. Var. 64, 202 (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.