MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The complexity of learning (pseudo)random dynamics of black holes and other chaotic systems

Author(s)
Yang, Lisa; Engelhardt, Netta
Thumbnail
Download13130_2025_Article_25809.pdf (890.1Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
It has been recently proposed that the naive semiclassical prediction of non-unitary black hole evaporation can be understood in the fundamental description of the black hole as a consequence of ignorance of high-complexity information. Validity of this conjecture implies that any algorithm which is polynomially bounded in computational complexity cannot accurately reconstruct the black hole dynamics. In this work, we prove that such bounded quantum algorithms cannot accurately predict (pseudo)random unitary dynamics, even if they are given access to an arbitrary set of polynomially complex observables under this time evolution; this shows that “learning” a (pseudo)random unitary is computationally hard. We use the common simplification of modeling black holes and more generally chaotic systems via (pseudo)random dynamics. The quantum algorithms that we consider are completely general, and their attempted guess for the time evolution of black holes is likewise unconstrained: it need not be a linear operator, and may be as general as an arbitrary (e.g. decohering) quantum channel.
Date issued
2025-03-20
URI
https://hdl.handle.net/1721.1/162337
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Journal of High Energy Physics
Publisher
Springer Berlin Heidelberg
Citation
Yang, L., Engelhardt, N. The complexity of learning (pseudo)random dynamics of black holes and other chaotic systems. J. High Energ. Phys. 2025, 153 (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.