Show simple item record

dc.contributor.authorCoelho, Ana Carolina
dc.contributor.authorWiezel, Claudia Emília Vieira
dc.contributor.authorde Campos, Alline Cristina
dc.contributor.authorFigueiredo, Lílian Louise Souza
dc.contributor.authorSuardi, Gabriela Aparecida Marcondes
dc.contributor.authorde Paula Bernardes, Juliana
dc.contributor.authorda Cunha Tirapelli, Daniela Pretti
dc.contributor.authorFaça, Vitor Marcel
dc.contributor.authorAbraham, Kuruvilla Joseph
dc.contributor.authorCarlotti-Júnior, Carlos Gilberto
dc.contributor.authorSiciliano, Velia
dc.contributor.authorWeiss, Ron
dc.contributor.authorGerson, Stanton
dc.contributor.authorFontes, Aparecida Maria
dc.date.accessioned2025-08-13T22:20:58Z
dc.date.available2025-08-13T22:20:58Z
dc.date.issued2025-07-23
dc.identifier.urihttps://hdl.handle.net/1721.1/162371
dc.description.abstractGaucher disease (GD) is an autosomal recessive disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) remains the standard of care for non-neuropathic GD patients, its high cost significantly limits accessibility. To enhance production efficiency, we developed a lentiviral system encoding a codon-optimized GCase gene driven by the human elongation factor 1a (hEF1&alpha;) promoter for stable production in human cell lines. A functional lentiviral vector, LV_EF1&alpha;_GBA_Opt, was generated at a titer of 7.88 &times; 10<sup>8</sup> LV particles/mL as determined by qPCR. Six transduction cycles were performed at a multiplicity of infection of 30&ndash;50. The transduced heterogeneous human cell population showed GCase-specific activity of 307.5 &plusmn; 53.49 nmol/mg protein/h, which represents a 3.21-fold increase compared to wild-type 293FT cells (95.58 &plusmn; 16.5 nmol/mg protein/h). Following single-cell cloning, two clones showed specific activity of 763.8 &plusmn; 135.1 and 752.0 &plusmn; 152.1 nmol/mg/h (clones 15 and 16, respectively). These results show that codon optimization, a lentiviral delivery system, and clonal selection together enable the establishment of stable human cell lines capable of producing high levels of biologically active, synthetic recombinant GCase in vitro. Further studies are warranted for the functional validation in GD patient-derived fibroblasts and animal models.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/ijms26157089en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleDevelopment of a Lentiviral Vector for High-Yield Production of Synthetic and Recombinant GCase for Gaucher Disease Therapyen_US
dc.typeArticleen_US
dc.identifier.citationCoelho, A.C.; Wiezel, C.E.V.; de Campos, A.C.; Figueiredo, L.L.S.; Suardi, G.A.M.; de Paula Bernardes, J.; da Cunha Tirapelli, D.P.; Faça, V.M.; Abraham, K.J.; Carlotti-Júnior, C.G.; et al. Development of a Lentiviral Vector for High-Yield Production of Synthetic and Recombinant GCase for Gaucher Disease Therapy. Int. J. Mol. Sci. 2025, 26, 7089.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.relation.journalInternational Journal of Molecular Sciencesen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-08-13T13:21:45Z
dspace.date.submission2025-08-13T13:21:44Z
mit.journal.volume26en_US
mit.journal.issue15en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record