MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theory of Faradaically Modulated Redox Active Electrodes for Electrochemically Mediated Selective Adsorption Processes

Author(s)
He, Fan; Bazant, Martin Z; Hatton, T Alan
Thumbnail
DownloadHe_2021_J._Electrochem._Soc._168_053501.pdf (1.705Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Electrochemically mediated selective adsorption is an emerging electrosorption technique that utilizes Faradaically enhanced redox active electrodes, which can adsorb ions not only electrostatically, but also electrochemically. The superb selectivity (>100) of this technique enables selective removal of toxic or high-value target ions under low energy consumption. Here, we develop a general theoretical framework to describe the competitive electrosorption phenomena involving multiple ions and surface-bound redox species. The model couples diffusion, convection and electromigration with competitive surface adsorption reaction kinetics, consistently derived from non-equilibrium thermodynamics. To optimize the selective removal of the target ions, design criteria were derived analytically from physically relevant dimensionless groups and time scales, where the propagation of the target anion’s concentration front is the limiting step. Detailed computational studies are reported for three case studies that cover a wide range of inlet concentration ratios between the competing ions. And in all three cases, target anions in the electrosorption cell forms a self-sharpening reaction-diffusion wave front. Based on the model, a three-step stop-flow operation scheme with a pure stripping solution of target anions is proposed that optimizes the ion adsorption performance and increases the purity of the regeneration stream to almost 100%, which is beneficial for downstream processing.
Date issued
2021-05-18
URI
https://hdl.handle.net/1721.1/162385
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of The Electrochemical Society
Publisher
The Electrochemical Society
Citation
He, Fan, Bazant, Martin Z and Hatton, T Alan. 2021. "Theory of Faradaically Modulated Redox Active Electrodes for Electrochemically Mediated Selective Adsorption Processes." Journal of The Electrochemical Society, 168 (5).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.