Show simple item record

dc.contributor.authorHayrapetyan, A.
dc.contributor.authorTumasyan, A.
dc.contributor.authorAdam, W.
dc.contributor.authorAndrejkovic, J. W.
dc.contributor.authorBenato, L.
dc.contributor.authorBergauer, T.
dc.contributor.authorChatterjee, S.
dc.contributor.authorDamanakis, K.
dc.contributor.authorDragicevic, M.
dc.contributor.authorHussain, P. S.
dc.contributor.authorJeitler, M.
dc.contributor.authorKrammer, N.
dc.contributor.authorLi, A.
dc.contributor.authorLiko, D.
dc.contributor.authorMikulec, I.
dc.contributor.authorSchieck, J.
dc.contributor.authorSchöfbeck, R.
dc.contributor.authorSchwarz, D.
dc.contributor.authorSonawane, M.
dc.contributor.authorWaltenberger, W.
dc.date.accessioned2025-08-15T15:21:58Z
dc.date.available2025-08-15T15:21:58Z
dc.date.issued2025-05-06
dc.identifier.urihttps://hdl.handle.net/1721.1/162389
dc.description.abstractData analyses in particle physics rely on an accurate simulation of particle collisions and a detailed simulation of detector effects to extract physics knowledge from the recorded data. Event generators together with a geant-based simulation of the detectors are used to produce large samples of simulated events for analysis by the LHC experiments. These simulations come at a high computational cost, where the detector simulation and reconstruction algorithms have the largest CPU demands. This article describes how machine-learning (ML) techniques are used to reweight simulated samples obtained with a given set of parameters to samples with different parameters or samples obtained from entirely different simulation programs. The ML reweighting method avoids the need for simulating the detector response multiple times by incorporating the relevant information in a single sample through event weights. Results are presented for reweighting to model variations and higher-order calculations in simulated top quark pair production at the LHC. This ML-based reweighting is an important element of the future computing model of the CMS experiment and will facilitate precision measurements at the High-Luminosity LHC.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-025-14097-xen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleReweighting simulated events using machine-learning techniques in the CMS experimenten_US
dc.typeArticleen_US
dc.identifier.citationHayrapetyan, A., Tumasyan, A., Adam, W. et al. Reweighting simulated events using machine-learning techniques in the CMS experiment. Eur. Phys. J. C 85, 495 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Scienceen_US
dc.relation.journalThe European Physical Journal Cen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-07-18T15:30:39Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2025-07-18T15:30:39Z
mit.journal.volume85en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record