Show simple item record

dc.contributor.authorSakurada, Tomoaki
dc.contributor.authorParitmongkol, Watcharaphol
dc.contributor.authorCho, Yeongsu
dc.contributor.authorLee, Woo Seok
dc.contributor.authorChatsiri, Petcharaphorn
dc.contributor.authorOppenheim, Julius J
dc.contributor.authorWan, Ruomeng
dc.contributor.authorSu, Annlin
dc.contributor.authorSamulewicz, Nicholas
dc.contributor.authorWannakan, Khemika
dc.contributor.authorMüller, Peter
dc.contributor.authorDincă, Mircea
dc.contributor.authorKulik, Heather J
dc.contributor.authorTisdale, William A
dc.date.accessioned2025-08-27T20:55:51Z
dc.date.available2025-08-27T20:55:51Z
dc.date.issued2025-08-19
dc.identifier.urihttps://hdl.handle.net/1721.1/162574
dc.description.abstractHybrid organic–inorganic semiconductors present new opportunities for optoelectronic materials design not available in all-organic or all-inorganic materials. One example is silver phenylselenide (AgSePh) – or “mithrene” – a blue-emitting 2D organic–inorganic semiconductor exhibiting strong optical and electronic anisotropy. Here, we show that the bandgap of mithrene can be systematically tuned by introducing electron-donating and electron-withdrawing groups to the phenyl ligands. We synthesized nine mithrene variants, eight of which formed 2D van der Waals crystals analogous to those of AgSePh. Density functional theory calculations reveal that these 2D mithrene variants are direct-gap or nearly direct gap semiconductors. Furthermore, we identify correlations between the optical gap and three experimental observables – the Hammett constant, 77Se chemical shift, and selenium partial charge – offering predictive power for bandgap tuning. These findings highlight new opportunities for applying the tools of chemical synthesis to semiconductor materials design.en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/jacs.5c07989en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Chemical Societyen_US
dc.titleSystematic Bandgap Engineering of a 2D Organic–Inorganic Chalcogenide Semiconductor via Ligand Modificationen_US
dc.typeArticleen_US
dc.identifier.citationSakurada, Tomoaki, Paritmongkol, Watcharaphol, Cho, Yeongsu, Lee, Woo Seok, Chatsiri, Petcharaphorn et al. 2025. "Systematic Bandgap Engineering of a 2D Organic–Inorganic Chalcogenide Semiconductor via Ligand Modification." Journal of the American Chemical Society.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.relation.journalJournal of the American Chemical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-08-27T20:46:27Z
dspace.orderedauthorsSakurada, T; Paritmongkol, W; Cho, Y; Lee, WS; Chatsiri, P; Oppenheim, JJ; Wan, R; Su, A; Samulewicz, N; Wannakan, K; Müller, P; Dincă, M; Kulik, HJ; Tisdale, WAen_US
dspace.date.submission2025-08-27T20:46:29Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record