MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CH−π Interactions Are Required for Human Galectin-3 Function

Author(s)
Diehl, Roger C; Chorghade, Rajeev S; Keys, Allison M; Alam, Mohammad Murshid; Early, Stephen A; Dugan, Amanda E; Krupkin, Miri; Ribbeck, Katharina; Kulik, Heather J; Kiessling, Laura L; ... Show more Show less
Thumbnail
DownloadPublished version (4.564Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivatives https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Glycan-binding proteins, or lectins, recognize distinct structural elements of polysaccharides, to mediate myriad biological functions. Targeting glycan-binding proteins involved in human disease has been challenging due to an incomplete understanding of the molecular mechanisms that govern protein-glycan interactions. Bioinformatics and structural studies of glycan-binding proteins indicate that aromatic residues with the potential for CH-π interactions are prevalent in glycan-binding sites. However, the contributions of these CH-π interactions to glycan binding and their relevance in downstream function remain unclear. An emblematic lectin, human galectin-3, recognizes lactose and <i>N</i>-acetyllactosamine-containing glycans by positioning the electropositive face of a galactose residue over the tryptophan 181 (W181) indole forming a CH-π interaction. We generated a suite of galectin-3 W181 variants to assess the importance of these CH-π interactions to glycan binding and function. As determined experimentally and further validated with computational modeling, variants with smaller or less electron-rich aromatic side chains (W181Y, W181F, W181H) or sterically similar but nonaromatic residues (W181M, W181R) showed poor or undetectable binding to lactose and attenuated ability to bind mucins or agglutinate red blood cells. The latter functions depend on multivalent binding, highlighting that weakened CH-π interactions cannot be overcome by avidity. Two galectin-3 variants with disrupted hydrogen bonding interactions (H158A and E184A) showed similarly impaired lactose binding. Molecular simulations demonstrate that all variants have decreased binding orientation stability relative to native galectin-3. Thus, W181 collaborates with the endogenous hydrogen bonding network to enhance binding affinity for lactose, and abrogation of these CH-π interactions is as deleterious as eliminating key hydrogen bonding interactions. These findings underscore the critical roles of CH-π interactions in carbohydrate binding and lectin function and will aid the development of novel lectin inhibitors.
Date issued
2024-07-18
URI
https://hdl.handle.net/1721.1/162787
Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Computational and Systems Biology Program; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering; Broad Institute of MIT and Harvard; Koch Institute for Integrative Cancer Research at MIT
Journal
JACS Au
Publisher
American Chemical Society
Citation
CH−π Interactions Are Required for Human Galectin-3 Function. Roger C. Diehl, Rajeev S. Chorghade, Allison M. Keys, Mohammad Murshid Alam, Stephen A. Early, Amanda E. Dugan, Miri Krupkin, Katharina Ribbeck, Heather J. Kulik, and Laura L. Kiessling. JACS Au 2024 4 (8), 3028-3037
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.