Show simple item record

dc.contributor.authorShih, Meng‐Chen
dc.contributor.authorTan, Shaun
dc.contributor.authorLu, Yongli
dc.contributor.authorKodalle, Tim
dc.contributor.authorLee, Do‐Kyoung
dc.contributor.authorDong, Yifan
dc.contributor.authorLarson, Bryon W
dc.contributor.authorPark, Soyeon
dc.contributor.authorZhang, Ruiqi
dc.contributor.authorGrotevent, Matthias J
dc.contributor.authorSverko, Tara
dc.contributor.authorZhu, Hua
dc.contributor.authorLin, Yu‐Kuan
dc.contributor.authorSutter‐Fella, Carolin M
dc.contributor.authorZhu, Kai
dc.contributor.authorBeard, Matthew C
dc.contributor.authorBulović, Vladimir
dc.contributor.authorBawendi, Moungi G
dc.date.accessioned2025-10-01T16:57:59Z
dc.date.available2025-10-01T16:57:59Z
dc.date.issued2025-03-18
dc.identifier.urihttps://hdl.handle.net/1721.1/162857
dc.description.abstractInterface engineering plays a critical role in advancing the performance ofperovskite solar cells. As such, 2D/3D perovskite heterostructures are ofparticular interest due to their optoelectrical properties and their furtherpotential improvements. However, for conventional solution-processed 2Dperovskites grown on an underlying 3D perovskite, the reaction stoichiometryis normally unbalanced with excess precursors. Moreover, the formed 2Dperovskite is impure, leading to unfavorable energy band alignment at theinterface. Here a simple method is presented that solves both issuessimultaneously. The 2D formation reaction is taken first to completion, fullyconsuming excess PbI2 . Then, isopropanol is utilized to remove excessorganic ligands, control the 2D perovskite thickness, and obtain a phase-pure,n = 2, 2D perovskite. The outcome is a pristine (without residual 2Dprecursors) and phase-pure 2D perovskite heterostructure with improvedsurface passivation and charge carrier extraction compared to theconventional solution process. PSCs incorporating this treatmentdemonstrate a notable improvement in both stability and power conversionefficiency, with negligible hysteresis, compared to the conventionalprocess.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.1002/adma.202416672en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivativesen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceWileyen_US
dc.titleA 2D/3D Heterostructure Perovskite Solar Cell with a Phase‐Pure and Pristine 2D Layeren_US
dc.typeArticleen_US
dc.identifier.citationM.-C. Shih, S. Tan, Y. Lu, T. Kodalle, D.-K. Lee, Y. Dong, B. W. Larson, S. Park, R. Zhang, M. J. Grotevent, T. Sverko, H. Zhu, Y.-K. Lin, C. M. Sutter-Fella, K. Zhu, M. C. Beard, V. Bulović, M. G. Bawendi, A 2D/3D Heterostructure Perovskite Solar Cell with a Phase-Pure and Pristine 2D Layer. Adv. Mater. 2025, 37, 2416672.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalAdvanced Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-09-29T15:10:50Z
dspace.orderedauthorsShih, M; Tan, S; Lu, Y; Kodalle, T; Lee, D; Dong, Y; Larson, BW; Park, S; Zhang, R; Grotevent, MJ; Sverko, T; Zhu, H; Lin, Y; Sutter‐Fella, CM; Zhu, K; Beard, MC; Bulović, V; Bawendi, MGen_US
dspace.date.submission2025-09-29T15:10:53Z
mit.journal.volume37en_US
mit.journal.issue17en_US
mit.licensePUBLISHER_CC


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record