Show simple item record

dc.contributor.authorMossel, Elchanan
dc.contributor.authorNiles‐Weed, Jonathan
dc.contributor.authorSun, Nike
dc.contributor.authorZadik, Ilias
dc.date.accessioned2025-10-02T14:29:58Z
dc.date.available2025-10-02T14:29:58Z
dc.date.issued2025-06-06
dc.identifier.urihttps://hdl.handle.net/1721.1/162867
dc.description.abstractA key set-theoretic “spread” lemma has been central to two recent celebrated results in combinatorics: the recentimprovements on the sunflower conjecture by Alweiss, Lovett, Wu, and Zhang; and the proof of the fractionalKahn–Kalai conjecture by Frankston, Kahn, Narayanan, and Park. In this work, we present a new proof of the spreadlemma, that—perhaps surprisingly—takes advantage of an explicit recasting of the proof in the language of Bayesianinference. We show that from this viewpoint the reasoning proceeds in a straightforward and principled probabilisticmanner, leading to a truncated second moment calculation which concludes the proof.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.1002/rsa.70008en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceWileyen_US
dc.titleA Bayesian Proof of the Spread Lemmaen_US
dc.typeArticleen_US
dc.identifier.citationMossel, E., Niles-Weed, J., Sun, N. and Zadik, I. (2025), A Bayesian Proof of the Spread Lemma. Random Struct Alg, 66: e70008.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalRandom Structures & Algorithmsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-02T14:22:19Z
dspace.orderedauthorsMossel, E; Niles‐Weed, J; Sun, N; Zadik, Ien_US
dspace.date.submission2025-10-02T14:22:20Z
mit.journal.volume66en_US
mit.journal.issue4en_US
mit.licensePUBLISHER_CC


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record