Show simple item record

dc.contributor.authorZhu, Junyi
dc.contributor.authorXu, Tianyu
dc.contributor.authorWang, Jiayu
dc.contributor.authorGuan, Emily
dc.contributor.authorMoon, JaeYoung
dc.contributor.authorMorvan, Stiven
dc.contributor.authorShin, D
dc.contributor.authorCola?o, Andrea
dc.contributor.authorMueller, Stefanie
dc.contributor.authorAhuja, Karan
dc.contributor.authorLuo, Yiyue
dc.contributor.authorChatterjee, Ishan
dc.date.accessioned2025-10-07T20:46:52Z
dc.date.available2025-10-07T20:46:52Z
dc.date.issued2025-09-28
dc.identifier.isbn979-8-4007-2037-6
dc.identifier.urihttps://hdl.handle.net/1721.1/163072
dc.descriptionUIST ’25, Busan, Republic of Koreaen_US
dc.description.abstractMicro-gesture recognition and fine-grain pinch press enables intuitive and discreet control of devices, offering significant potential for enhancing human-computer interaction (HCI). In this paper, we present EI-Lite, a lightweight wrist-worn electrical impedance sensing device for micro-gesture recognition and continuous pinch force estimation. We elicit an optimal and simplified device architecture through an ablation study on electrode placement with 13 users, and implement the elicited designs through 3D printing. We capture data on 15 participants on (1) six common micro-gestures (plus idle state) and (2) index finger pinch forces, then develop machine learning models that interpret the impedance signals generated by these micro-gestures and pinch forces. Our system is capable of accurate recognition of micro-gesture events (96.33% accuracy), as well as continuously estimating the pinch force of the index finger in physical units (Newton), with the mean-squared-error (MSE) of 0.3071 (or mean-force-variance of 0.55 Newtons) over 15 participants. Finally, we demonstrate EI-Lite’s applicability via three applications in AR/VR, gaming, and assistive technologies.en_US
dc.publisherACM|The 38th Annual ACM Symposium on User Interface Software and Technologyen_US
dc.relation.isversionofhttps://doi.org/10.1145/3746059.3747671en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleEI-Lite: Electrical Impedance Sensing for Micro-gesture Recognition and Pinch Force Estimationen_US
dc.typeArticleen_US
dc.identifier.citationJunyi Zhu, Tianyu Xu, Jiayu Wang, Emily Guan, JaeYoung Moon, Stiven Morvan, D Shin, Andrea Colaço, Stefanie Mueller, Karan Ahuja, Yiyue Luo, and Ishan Chatterjee. 2025. EI-Lite: Electrical Impedance Sensing for Micro-gesture Recognition and Pinch Force Estimation. In Proceedings of the 38th Annual ACM Symposium on User Interface Software and Technology (UIST '25). Association for Computing Machinery, New York, NY, USA, Article 23, 1–14.en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2025-10-01T07:53:47Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2025-10-01T07:53:48Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record