Show simple item record

dc.contributor.authorLee, Sanghee
dc.contributor.authorBathe, Klaus-Jürgen
dc.date.accessioned2025-10-08T18:17:32Z
dc.date.available2025-10-08T18:17:32Z
dc.date.issued2025-08-20
dc.identifier.urihttps://hdl.handle.net/1721.1/163088
dc.description.abstractWe propose a B-spline-based constitutive neural network to model the mechanical behavior of incompressible isotropic materials. The theoretical foundation of this network is the Sussman-Bathe model which interpolates tension–compression test data points and recovers the strain energy function. Our neural network uses regression to self-optimize the knot configurations of the B-splines and to determine a twice differentiable curve of the material response that is closely aligned with the given data points. We address datasets displaying physically complicated behaviors. Through the patch test validation of the constitutive model and illustrative example solutions, we highlight the flexibility inherent in spline-based models and the automated approximation capabilities enabled by neural networks.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s44379-025-00031-1en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleA constitutive neural network for incompressible hyperelastic materialsen_US
dc.typeArticleen_US
dc.identifier.citationLee, S., Bathe, KJ. A constitutive neural network for incompressible hyperelastic materials. Mach. Learn. Comput. Sci. Eng 1, 31 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineeringen_US
dc.relation.journalMachine Learning for Computational Science and Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-08T14:37:18Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2025-10-08T14:37:18Z
mit.journal.volume1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record