MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mean robust optimization

Author(s)
Wang, Irina; Becker, Cole; Van Parys, Bart; Stellato, Bartolomeo
Download10107_2024_2170_ReferencePDF.pdf (Embargoed until: 2025-11-28, 1.294Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Robust optimization is a tractable and expressive technique for decision-making under uncertainty, but it can lead to overly conservative decisions when pessimistic assumptions are made on the uncertain parameters. Wasserstein distributionally robust optimization can reduce conservatism by being data-driven, but it often leads to very large problems with prohibitive solution times. We introduce mean robust optimization, a general framework that combines the best of both worlds by providing a trade-off between computational effort and conservatism. We propose uncertainty sets constructed based on clustered data rather than on observed data points directly thereby significantly reducing problem size. By varying the number of clusters, our method bridges between robust and Wasserstein distributionally robust optimization. We show finite-sample performance guarantees and explicitly control the potential additional pessimism introduced by any clustering procedure. In addition, we prove conditions for which, when the uncertainty enters linearly in the constraints, clustering does not affect the optimal solution. We illustrate the efficiency and performance preservation of our method on several numerical examples, obtaining multiple orders of magnitude speedups in solution time with little-to-no effect on the solution quality.
Date issued
2024-11-28
URI
https://hdl.handle.net/1721.1/163155
Department
Massachusetts Institute of Technology. Operations Research Center
Journal
Mathematical Programming
Publisher
Springer Berlin Heidelberg
Citation
Wang, I., Becker, C., Van Parys, B. et al. Mean robust optimization. Math. Program. 213, 1235–1277 (2025).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.