Show simple item record

dc.contributor.authorPerego, Alessandro
dc.contributor.authorVadillo, Damien C.
dc.contributor.authorMills, Matthew J. L.
dc.contributor.authorDas, Mohua
dc.contributor.authorMcKinley FRS, Gareth H.
dc.date.accessioned2025-10-10T17:09:52Z
dc.date.available2025-10-10T17:09:52Z
dc.date.issued2025-08-15
dc.identifier.urihttps://hdl.handle.net/1721.1/163157
dc.description.abstractThe optimally windowed chirp (OWCh) methodology offers an alternative to traditional discrete frequency sweeps, acquiring complete rheological spectra in seconds while preserving data density and accuracy. For thermorheologically simple materials, OWCh accelerates data collection, enabling rapid creation of time–temperature superposition (tTS) master curves, potentially saving hours of instrument time. For mutating materials, such as those undergoing curing, OWCh facilitates detailed rheological characterization of viscoelastic properties throughout these transition events. We implemented OWCh within an industrial analytical research framework using commercially available rheometers. This integration is enhanced by two custom Python packages, piblin and hermes-rheo, which streamline and automate analysis of rheological datasets. For thermorheologically simple materials, this framework reduces tTS master curve data collection time by 40% while increasing data density by an order of magnitude. For mutating materials, we leverage the mutation number to design OWCh waveforms, effectively probing the characteristic timescale of fast thermomechanical transitions during curing experiments.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00397-025-01511-0en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleEvaluation of optimally windowed chirp signals in industrial rheological measurements: method development and data processingen_US
dc.typeArticleen_US
dc.identifier.citationPerego, A., Vadillo, D.C., Mills, M.J.L. et al. Evaluation of optimally windowed chirp signals in industrial rheological measurements: method development and data processing. Rheol Acta 64, 391–406 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalRheologica Actaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-08T14:43:17Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2025-10-08T14:43:17Z
mit.journal.volume64en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record