Show simple item record

dc.contributor.authorSrinivasan, Shreyas
dc.contributor.authorZhang, Ruiqi
dc.contributor.authorDillender, Mike
dc.contributor.authorNguyen, Thienan
dc.contributor.authorLaitz, Madeleine
dc.contributor.authorKim, Taehyung
dc.contributor.authorKim, Kwang‐Hee
dc.contributor.authorKim, Tae‐Gon
dc.contributor.authorBawendi, Moungi
dc.contributor.authorBulović, Vladimir
dc.date.accessioned2025-10-16T15:16:42Z
dc.date.available2025-10-16T15:16:42Z
dc.date.issued2025-06-13
dc.identifier.urihttps://hdl.handle.net/1721.1/163183
dc.description.abstractIt is demonstrated that the electroluminescent layer in a colloidal quantum dotlight emitting diode (QD-LED), formed by stochastic methods such as spin-coating, incorporates morphological thickness inhomogeneities, resulting inlocal electric field variations. These inhomogeneities can be directly visualizedand quantified using confocal micro-photoluminescence (PL) and micro-electroluminescence (EL), as showed in QD-LEDs with stochastically processedInP/ZnSe/ZnS colloidal quantum dots (QDs). Around 5% of the device showsEL darkspots under forward bias and PL hotspots under photoexcitation,with a strong spatial correlation between these features. The PL hotspots(EL darkspots) correspond to thicker regions in the stochastically-processedQD film. This thickness variation leads to two distinct QD sub-populationsresponding differently to optical excitation. Time and energy-resolved spectraldiffusion measurements reveal that most excitons belong to a “more-mobile”sub-population with fast energy transfer and short, electric field-dependentlifetimes, while a smaller fraction belongs to a “less-mobile” sub-populationwith slower energy transfer and longer, electric field-independentlifetimes. The “less-mobile” excitons correlate with thicker QD regions. Thesefindings shed light on the local electric field inhomogeneity in QD-LEDs,offering insights into device operation, possible degradation mechanisms,and strategies for developing stochastically-processed micro-QD-LEDs.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.1002/adom.202500058en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivativesen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceWileyen_US
dc.titleElectric Field Inhomogeneity in Colloidal QD‐LEDsen_US
dc.typeArticleen_US
dc.identifier.citationS. Srinivasan, R. Zhang, M. Dillender, T. Nguyen, M. Laitz, T. Kim, K.-H. Kim, T.-G. Kim, M. Bawendi, V. Bulović, Electric Field Inhomogeneity in Colloidal QD-LEDs. Adv. Optical Mater. 2025, 13, 2500058.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalAdvanced Optical Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-16T15:08:36Z
dspace.orderedauthorsSrinivasan, S; Zhang, R; Dillender, M; Nguyen, T; Laitz, M; Kim, T; Kim, K; Kim, T; Bawendi, M; Bulović, Ven_US
dspace.date.submission2025-10-16T15:08:38Z
mit.journal.volume13en_US
mit.journal.issue19en_US
mit.licensePUBLISHER_CC


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record