Show simple item record

dc.contributor.authorNarayanan, Harini
dc.contributor.authorHinckley, Joshua A
dc.contributor.authorBarry, Rachel
dc.contributor.authorDang, Brendan
dc.contributor.authorWolffe, Lenna A
dc.contributor.authorAtari, Adel
dc.contributor.authorTseng, Yuen-Yi
dc.contributor.authorLove, J Christopher
dc.date.accessioned2025-10-17T20:35:46Z
dc.date.available2025-10-17T20:35:46Z
dc.date.issued2025-07-01
dc.identifier.urihttps://hdl.handle.net/1721.1/163220
dc.description.abstractOptimizing operational conditions for complex biological systems used in life sciences research and biotechnology is an arduous task. Here, we apply a Bayesian Optimization-based iterative framework for experimental design to accelerate cell culture media development for two applications. First, we show that this approach yields new compositions of media with cytokine supplementation to maintain the viability and distribution of human peripheral blood mononuclear cells in the culture. Second, we apply this framework to optimize the production of three recombinant proteins in cultivations of <jats:italic>K.phaffii</jats:italic>. We identified conditions with improved outcomes for both applications compared to the initial standard media using 3–30 times fewer experiments than that estimated for other methods such as the standard Design of Experiments. Subsequently, we also demonstrated the extensibility of our approach to efficiently account for additional design factors through transfer learning. These examples demonstrate how coupling data collection, modeling, and optimization in this iterative paradigm, while using an exploration-exploitation trade-off in each iteration, can reduce the time and resources for complex optimization tasks such as the one demonstrated here.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-025-61113-5en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Science and Business Media LLCen_US
dc.titleAccelerating cell culture media development using Bayesian optimization-based iterative experimental designen_US
dc.typeArticleen_US
dc.identifier.citationNarayanan, H., Hinckley, J.A., Barry, R. et al. Accelerating cell culture media development using Bayesian optimization-based iterative experimental design. Nat Commun 16, 6055 (2025).en_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.departmentBroad Institute of MIT and Harvarden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-17T20:28:07Z
dspace.orderedauthorsNarayanan, H; Hinckley, JA; Barry, R; Dang, B; Wolffe, LA; Atari, A; Tseng, Y-Y; Love, JCen_US
dspace.date.submission2025-10-17T20:28:08Z
mit.journal.volume16en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record