MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forecasting Research Trends Using Knowledge Graphs and Large Language Models

Author(s)
Tomczak, Maciej; Park, Yang Jeong; Hsu, Chia‐Wei; Brown, Payden; Massa, Dario; Sankowski, Piotr; Li, Ju; Papanikolaou, Stefanos; ... Show more Show less
Thumbnail
DownloadPublished version (5.993Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Since ancient times, oracles (e.g., Delphi) has the ability to provide useful visions of where the society is headed, based on key event correlations and educated guesses. Currently, foundation models are able to distill and analyze enormous text-based data that can be used to understand where societal components are headed in the future. This work investigates the use of three large language models (LLM) and their ability to aid the research of nuclear materials. Using a large dataset of Journal of Nuclear Materials papers spanning from 2001 to 2021, models are evaluated and compared with perplexity, similarity of output, and knowledge graph metrics such as shortest path length. Models are compared to the highest performer, OpenAI's GPT-3.5. LLM-generated knowledge graphs with more than 2 × 105 nodes and 3.3 × 105 links are analyzed per publication year, and temporal tracking leads to the identification of criteria for publication innovation, controversy, influence, and future research trends.
Date issued
2025-09-12
URI
https://hdl.handle.net/1721.1/163231
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Advanced Intelligent Systems
Publisher
Wiley
Citation
Maciej Tomczak, Yang Jeong Park, Chia-Wei Hsu, Payden Brown, Dario Massa, Piotr Sankowski, Ju Li, Stefanos Papanikolaou. Adv. Intell. Syst.. 2025; 000, e2401124.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.