MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum Perfect Matchings

Author(s)
Cui, David; Mančinska, Laura; Nezhadi, Seyed S.; Roberson, David E.
Thumbnail
Download23_2025_Article_1632.pdf (432.5Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We investigate quantum and nonsignaling generalizations of perfect matchings in graphs using nonlocal games. Specifically, we introduce nonlocal games that test for L-perfect matchings in bipartite graphs, perfect matchings in general graphs and hypergraphs, and fractional perfect matchings. Our definitions come from the fact that these games are classical property tests for the corresponding matching conditions. We use the existence of perfect quantum and nonsignaling strategies for these games to define quantum and nonsignaling versions of perfect matchings. Finally, we provide characterizations of when graphs exhibit these extended properties: For nonsignaling matchings, we give a complete combinatorial characterization. In particular, a graph has a nonsignaling perfect matching if and only if it admits a fractional perfect matching that has bounded value on triangles. In bipartite graphs, the nonsignaling L-perfect matching property is achieved exactly when the left component of the graph can be split into two disjoint subgraphs: one with a classical L-perfect matching and another with left-degree 2. In the quantum setting, we show that complete graphs K n with odd n ≥ 7 have quantum perfect matchings. We prove that a graph has a quantum perfect matching if and only if the quantum independence number of its line graph is maximal, extending a classical relationship between perfect matchings and line graph independence numbers. For bipartite graphs, we establish that the L-perfect matching game does not exhibit quantum pseudotelepathy, but we characterize the quantum advantage for complete bipartite graphs K n , 2 . Additionally, we prove that deciding quantum perfect matchings in hypergraphs is undecidable and leaves open the question of its complexity in graphs.
Date issued
2025-10-14
URI
https://hdl.handle.net/1721.1/163240
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annales Henri Poincaré
Publisher
Springer International Publishing
Citation
Cui, D., Mančinska, L., Nezhadi, S.S. et al. Quantum Perfect Matchings. Ann. Henri Poincaré (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.