MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deciphering the origins of the elements through galactic archeology

Author(s)
Farouqi, Khalil; Frebel, Anna; Thielemann, Friedrich-Karl
Thumbnail
Download10050_2025_Article_1668.pdf (2.616Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Additional downloads
Corrected version (2.616Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Low-metallicity stars preserve the signatures of the first stellar nucleosynthesis events in the Galaxy, as their surface abundances reflect the composition of the interstellar medium from the time when they were born. Aside from primordial Big Bang nucleosynthesis, massive stars, due to their short lifetimes, dominate the wind and explosive ejecta into the interstellar medium of the early Galaxy. Most of them will end as core-collapse supernova (CCSN) explosions, and typical ejected abundance distributions, e.g. in terms of the α -element-to-Fe ratios, reflect these contributions. Essentially all CCSNe contribute 56Fe (decaying from radioactive 56Ni). Therefore, low-metallicity stars can be used to test whether the abundances of any other elements are correlated with those of Fe, i.e. whether these elements have been co-produced in the progenitor sources or if they require either a different or additional astrophysical origin(s). The present analysis focuses on stars with [Fe/H]<-2, as they probe the earliest formation phase of the Galaxy when only one or very few nucleosynthesis events had contributed their ejecta to the gas from which the lowest metallicity stars form. This was also the era before low and intermediate mass stars (or type Ia supernovae) could contribute any additional heavy elements. Following earlier work on the origin of heavy r-process elements [1], we extend the present study to examine Pearson and Spearman correlations of Fe with Li, Be, C, N, O, Na, Mg, Si, S, K, Ca, Ti, Cr, Ni, Zn, Ge, Se, Sr, Y, Zr, Mo, Ba, La, Ce, Sm, Eu, Gd, Dy, Yb, Lu, Hf, Os, Ir, Pb, and Th, using high-resolution stellar abundance data from the SAGA [2] and JINA [3] databases. The main goal is to identify which of the observed elements (i) may have been co-produced with Fe in (possibly a variety of) CCSNe, and which elements require (ii) either a completely different, or (iii) at least an additional astrophysical origin.
Date issued
2025-09-12
URI
https://hdl.handle.net/1721.1/163468
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
The European Physical Journal A
Publisher
Springer Berlin Heidelberg
Citation
Farouqi, K., Frebel, A. & Thielemann, FK. Deciphering the origins of the elements through galactic archeology. Eur. Phys. J. A 61, 207 (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.