Show simple item record

dc.contributor.authorHaah, Jeongwan
dc.contributor.authorLiu, Yunchao
dc.contributor.authorTan, Xinyu
dc.date.accessioned2025-10-31T14:40:33Z
dc.date.available2025-10-31T14:40:33Z
dc.date.issued2025-10-30
dc.identifier.urihttps://hdl.handle.net/1721.1/163472
dc.description.abstractWe construct random walks on simple Lie groups that quickly converge to the Haar measure for all moments up to order t. Specifically, a step of the walk on the unitary or orthogonal group of dimension 2 n is a random Pauli rotation e i θ P / 2 . The spectral gap of this random walk is shown to be Ω ( 1 / t ) , which coincides with the best previously known bound for a random walk on the permutation group on { 0 , 1 } n . This implies that the walk gives an ε -approximate unitary t-design in depth O ( n t 2 + t log 1 ε ) d where d = O ( log n ) is the circuit depth to implement e i θ P / 2 . Our simple proof uses quadratic Casimir operators of Lie algebras.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00220-025-05480-6en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleEfficient Approximate Unitary Designs from Random Pauli Rotationsen_US
dc.typeArticleen_US
dc.identifier.citationHaah, J., Liu, Y. & Tan, X. Efficient Approximate Unitary Designs from Random Pauli Rotations. Commun. Math. Phys. 406, 309 (2025).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-31T04:46:14Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2025-10-31T04:46:13Z
mit.journal.volume406en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record