Show simple item record

dc.contributor.authorGoss, Matthew B
dc.contributor.authorKroll, Jesse H
dc.date.accessioned2025-10-31T15:17:18Z
dc.date.available2025-10-31T15:17:18Z
dc.date.issued2024-10-17
dc.identifier.urihttps://hdl.handle.net/1721.1/163475
dc.description.abstractGermicidal ultraviolet lamps outputting 222 nm light (GUV222) have the potential to reduce the airborne spread of disease through effective inactivation of pathogens, while remaining safe for direct human exposure. However, recent studies have identified these lamps as a source of ozone and other secondary pollutants such as secondary organic aerosol (SOA), and the health effects of these pollutants must be balanced against the benefits of pathogen inactivation. While ozone reactions are likely to account for much of this secondary indoor air pollution, 222 nm light may initiate additional non-ozone chemical processes, including the formation of other oxidants and direct photolytic reactions, which are not as well understood. This work examines the impacts of GUV222 on SOA formation and composition by comparing limonene oxidation under GUV222 and O3-only control conditions in a laboratory chamber. Differences between these experiments enable us to distinguish patterns in aerosol formation driven by ozone chemistry from those driven by other photolytic processes. These experiments also examine the influence of the addition of NO2 and nitrous acid (HONO), and investigate SOA formation in sampled outdoor air. SOA composition and yield vary only slightly with respect to GUV222vs. ozone-only conditions; NO2 and HONO photolysis do not appreciably affect the observed chemistry. In contrast, we observe consistent new particle formation under high-fluence 222 nm light (45 μW cm−2) that differs substantially from ozone-only experiments. This observed new particle formation represents an additional reason to keep GUV222 fluence rates to the lowest effective levels.en_US
dc.language.isoen
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttps://doi.org/10.1039/D4EM00384Een_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleOrganic aerosol formation from 222 nm germicidal light: ozone-initiated vs. non-ozone pathwaysen_US
dc.typeArticleen_US
dc.identifier.citationGoss, Matthew B and Kroll, Jesse H. 2024. "Organic aerosol formation from 222 nm germicidal light: ozone-initiated vs. non-ozone pathways." Environmental Science: Processes & Impacts, 27 (6).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalEnvironmental Science: Processes & Impactsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-10-31T14:21:51Z
dspace.orderedauthorsGoss, MB; Kroll, JHen_US
dspace.date.submission2025-10-31T14:22:03Z
mit.journal.volume27en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record