Show simple item record

dc.contributor.authorChin, Byron
dc.date.accessioned2025-10-31T15:51:17Z
dc.date.available2025-10-31T15:51:17Z
dc.date.issued2025-08-11
dc.identifier.issn1042-9832
dc.identifier.issn1098-2418
dc.identifier.urihttps://hdl.handle.net/1721.1/163477
dc.description.abstractWe study the typical structure of a sparse Erdős–Rényi random graph conditioned on the lower tail subgraph count event. We show that in certain regimes, a typical graph sampled from the conditional distribution resembles the entropy minimizer of the mean field approximation in the sense of both subgraph counts and cut norm. The main ingredients are an adaptation of an entropy increment scheme of Kozma and Samotij, and a new stability for the solution of the associated entropy variational problem. The proof can be interpreted as a structural application of the new probabilistic hypergraph container lemma for sparser than average sets, and suggests a more general framework for establishing such typical behavior statements.en_US
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.1002/rsa.70028en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceWileyen_US
dc.titleStructure of Lower Tails in Sparse Random Graphsen_US
dc.typeArticleen_US
dc.identifier.citationChin, B. 2025. “ Structure of Lower Tails in Sparse Random Graphs.” Random Structures & Algorithms 67, no. 1: e70028.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalRandom Structures & Algorithmsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doihttps://doi.org/10.1002/rsa.70028
dspace.date.submission2025-10-31T15:46:34Z
mit.journal.volume67en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record