MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modular chaos, operator algebras, and the Berry phase

Author(s)
de Boer, Jan; Najian, Bahman; van der Heijden, Jeremy; Zukowski, Claire
Thumbnail
Download13130_2025_Article_27166.pdf (1.007Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Modular Berry transport associates a geometric phase to a zero mode ambiguity in a family of modular operators. In holographic settings, this phase was shown to encode nontrivial information about the emergent spacetime geometry. We reformulate modular Berry transport for arbitrary von Neumann algebras, including giving a precise definition of the zero mode projection in terms of a conditional expectation. For a certain class of state perturbations, we demonstrate that the modular Berry phase gives rise to an emergent symplectic form in the large N limit, extending related results in the context of subregion/subalgebra duality. We also show that the vanishing of the Berry curvature for modular scrambling modes signals the emergence of a local Poincaré algebra, which plays a key role in the quantum ergodic hierarchy. These results provide an intriguing relation between geometric phases, modular chaos and the local structure of spacetime.
Date issued
2025-09-10
URI
https://hdl.handle.net/1721.1/163655
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Journal of High Energy Physics
Publisher
Springer Berlin Heidelberg
Citation
de Boer, J., Najian, B., van der Heijden, J. et al. Modular chaos, operator algebras, and the Berry phase. J. High Energ. Phys. 2025, 86 (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.