Show simple item record

dc.contributor.authorDao, Cong-Tinh
dc.contributor.authorPhan, Nguyen M. T.
dc.contributor.authorDing, Jun-En
dc.contributor.authorWu, Chenwei
dc.contributor.authorRestrepo, David
dc.contributor.authorLuo, Dongsheng
dc.contributor.authorZhao, Fanyi
dc.contributor.authorLiao, Chun-Chieh
dc.contributor.authorPeng, Wen-Chih
dc.contributor.authorWang, Chi-Te
dc.contributor.authorChen, Pei-Fu
dc.contributor.authorChen, Ling
dc.contributor.authorJu, Xinglong
dc.contributor.authorLiu, Feng
dc.contributor.authorHung, Fang-Ming
dc.date.accessioned2025-12-01T22:42:45Z
dc.date.available2025-12-01T22:42:45Z
dc.date.issued2025-11-27
dc.identifier.urihttps://hdl.handle.net/1721.1/164107
dc.description.abstractElectronic health records (EHRs) are designed to synthesize diverse data types, including unstructured clinical notes, structured lab tests, and time-series visit data. Physicians draw on these multimodal and temporal sources of EHR data to form a comprehensive view of a patient’s health, which is crucial for informed therapeutic decision-making. Yet, most predictive models fail to fully capture the interactions, redundancies, and temporal patterns across multiple data modalities, often focusing on a single data type or overlooking these complexities. In this paper, we present CURENet, a multimodal model (Combining Unified Representations for Efficient chronic disease prediction) that integrates unstructured clinical notes, lab tests, and patients’ time-series data by utilizing large language models (LLMs) for clinical text processing and textual lab tests, as well as transformer encoders for longitudinal sequential visits. Curenet has been capable of capturing the intricate interaction between different forms of clinical data and creating a more reliable predictive model for chronic illnesses. We evaluated CURENet using the public MIMIC-III and private FEMH datasets, where it achieved over 94% accuracy in predicting the top 10 chronic conditions in a multi-label framework. Our findings highlight the potential of multimodal EHR integration to enhance clinical decision-making and improve patient outcomes.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s13755-025-00396-wen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleCURENet: combining unified representations for efficient chronic disease predictionen_US
dc.typeArticleen_US
dc.identifier.citationDao, CT., Phan, N.M.T., Ding, JE. et al. CURENet: combining unified representations for efficient chronic disease prediction. Health Inf Sci Syst 14, 7 (2026).en_US
dc.contributor.departmentMIT Critical Data (Laboratory)en_US
dc.relation.journalHealth Information Science and Systemsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-11-30T04:11:59Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2025-11-30T04:11:59Z
mit.journal.volume14en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record