MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of systematic uncertainty-aware neural network trainings for binned-likelihood analyses at the LHC

Author(s)
CMS Collaboration
Thumbnail
Download10052_2025_Article_14713.pdf (2.787Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We propose a neural network training method capable of accounting for the effects of systematic variations of the data model in the training process and describe its extension towards neural network multiclass classification. The procedure is evaluated on the realistic case of the measurement of Higgs boson production via gluon fusion and vector boson fusion in the τ τ decay channel at the CMS experiment. The neural network output functions are used to infer the signal strengths for inclusive production of Higgs bosons as well as for their production via gluon fusion and vector boson fusion. We observe improvements of 12 and 16% in the uncertainty in the signal strengths for gluon and vector-boson fusion, respectively, compared with a conventional neural network training based on cross-entropy.
Date issued
2025-11-26
URI
https://hdl.handle.net/1721.1/164114
Department
Massachusetts Institute of Technology. Laboratory for Nuclear Science; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology. Department of Physics
Journal
The European Physical Journal C
Publisher
Springer Berlin Heidelberg
Citation
CMS Collaboration. Development of systematic uncertainty-aware neural network trainings for binned-likelihood analyses at the LHC. Eur. Phys. J. C 85, 1360 (2025).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.