Show simple item record

dc.contributor.authorGwon, Daniel
dc.contributor.authorJedidi, Nour
dc.contributor.authorLin, Jimmy
dc.date.accessioned2025-12-11T20:01:25Z
dc.date.available2025-12-11T20:01:25Z
dc.date.issued2025-11-10
dc.identifier.isbn979-8-4007-2040-6
dc.identifier.urihttps://hdl.handle.net/1721.1/164284
dc.descriptionCIKM ’25, Seoul, Republic of Koreaen_US
dc.description.abstractPromptagator demonstrated that Large Language Models (LLMs) with few-shot prompts can be used as task-specific query generators for fine-tuning domain-specialized dense retrieval models. However, the original Promptagator approach relied on proprietary and large-scale LLMs which users may not have access to or may be prohibited from using with sensitive data. In this work, we study the impact of open-source LLMs at accessible scales (≤14B parameters) as an alternative. Our results demonstrate that open-source LLMs as small as 3B parameters can serve as effective Promptagator-style query generators. We hope our work will inform practitioners with reliable alternatives for synthetic data generation and give insights to maximize fine-tuning results for domain-specific applications. Our code is available at https://www.github.com/mitll/promptodileen_US
dc.publisherACM|Proceedings of the 34th ACM International Conference on Information and Knowledge Managementen_US
dc.relation.isversionofhttps://doi.org/10.1145/3746252.3760960en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleStudy on LLMs for Promptagator-Style Dense Retriever Trainingen_US
dc.typeArticleen_US
dc.identifier.citationDaniel Gwon, Nour Jedidi, and Jimmy Lin. 2025. Study on LLMs for Promptagator-Style Dense Retriever Training. In Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25). Association for Computing Machinery, New York, NY, USA, 4748–4752.en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.identifier.mitlicensePUBLISHER_POLICY
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2025-12-01T09:24:35Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2025-12-01T09:24:35Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record