MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation

Author(s)
Jackson, Ilya; Ivanov, Dmitry; Dolgui, Alexandre; Namdar, Jafar
Thumbnail
DownloadPublished version (3.815Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivatives https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
This research examines the transformative potential of artificial intelligence (AI) in general and Generative AI (GAI) in particular in supply chain and operations management (SCOM). Through the lens of the resource-based view and based on key AI capabilities such as learning, perception, prediction, interaction, adaptation, and reasoning, we explore how AI and GAI can impact 13 distinct SCOM decision-making areas. These areas include but are not limited to demand forecasting, inventory management, supply chain design, and risk management. With its outcomes, this study provides a comprehensive understanding of AI and GAI's functionality and applications in the SCOM context, offering a practical framework for both practitioners and researchers. The proposed framework systematically identifies where and how AI and GAI can be applied in SCOM, focussing on decision-making enhancement, process optimisation, investment prioritisation, and skills development. Managers can use it as a guidance to evaluate their operational processes and identify areas where AI and GAI can deliver improved efficiency, accuracy, resilience, and overall effectiveness. The research underscores that AI and GAI, with their multifaceted capabilities and applications, open a revolutionary potential and substantial implications for future SCOM practices, innovations, and research.
Date issued
2024-09-01
URI
https://hdl.handle.net/1721.1/164337
Department
Massachusetts Institute of Technology. Center for Transportation & Logistics
Journal
International Journal of Production Research
Publisher
Taylor & Francis
Citation
Jackson, I., Ivanov, D., Dolgui, A., & Namdar, J. (2024). Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation. International Journal of Production Research, 62(17), 6120–6145.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.