| dc.contributor.author | Dean, Pablo A | |
| dc.contributor.author | Wu, Yifan | |
| dc.contributor.author | Guo, Sheng | |
| dc.contributor.author | Swager, Timothy M | |
| dc.contributor.author | Smith, Zachary P | |
| dc.date.accessioned | 2025-12-17T18:33:42Z | |
| dc.date.available | 2025-12-17T18:33:42Z | |
| dc.date.issued | 2024-10-02 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/164397 | |
| dc.description.abstract | Competitive sorption enables the emergent phenomenon of enhanced CO<sub>2</sub>-based selectivities for gas separation membranes when using microporous polymers with primary amines. However, strong secondary forces in these polymers through hydrogen bonding results in low solvent solubility, precluding standard solution processing approaches to form these polymers into membrane films. Herein, we circumvent these manufacturing constraints while maintaining competitive-sorption enhancements by synthesizing eight representative microporous poly(arylene ether)s (PAEs) with tertiary amines. High-pressure H<sub>2</sub>S, CO<sub>2</sub>, and CH<sub>4</sub> sorption isotherms were collected for these samples to demonstrate enhanced affinity for acid gases relative to the unfunctional control polymer. Although competitive sorption was observed for all samples, improvements were less pronounced than for primary-amine-functional analogs. For H<sub>2</sub>S-based separations, the benefits of competitive sorption offset decreases in selectivity due to plasticization. This detailed study helps to elucidate the role of tertiary amines for acid gas separations in solution-processable microporous PAEs. | en_US |
| dc.language.iso | en | |
| dc.publisher | American Chemical Society | en_US |
| dc.relation.isversionof | 10.1021/jacsau.4c00489 | en_US |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivatives | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
| dc.source | American Chemical Society | en_US |
| dc.title | Tertiary-Amine-Functional Poly(arylene ether)s for Acid-Gas Separations | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Tertiary-Amine-Functional Poly(arylene ether)s for Acid-Gas Separations. Pablo A. Dean, Yifan Wu, Sheng Guo, Timothy M. Swager, and Zachary P. Smith. JACS Au 2024 4 (10), 3848-3856 | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
| dc.relation.journal | JACS Au | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2025-12-17T18:26:09Z | |
| dspace.orderedauthors | Dean, PA; Wu, Y; Guo, S; Swager, TM; Smith, ZP | en_US |
| dspace.date.submission | 2025-12-17T18:26:11Z | |
| mit.journal.volume | 4 | en_US |
| mit.journal.issue | 10 | en_US |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |