Show simple item record

dc.contributor.authorNagaya, Narumi
dc.contributor.authorLee, Kangmin
dc.contributor.authorPerkinson, Collin F
dc.contributor.authorLi, Aaron
dc.contributor.authorLee, Youri
dc.contributor.authorZhong, Xinjue
dc.contributor.authorLee, Sujin
dc.contributor.authorWeisburn, Leah P
dc.contributor.authorWang, Janet Z
dc.contributor.authorBaikie, Tomi K
dc.contributor.authorBawendi, Moungi G
dc.contributor.authorVan Voorhis, Troy
dc.contributor.authorTisdale, William A
dc.contributor.authorKahn, Antoine
dc.contributor.authorSeo, Kwanyong
dc.contributor.authorBaldo, Marc A
dc.date.accessioned2026-02-04T18:28:38Z
dc.date.available2026-02-04T18:28:38Z
dc.date.issued2025-07-16
dc.identifier.urihttps://hdl.handle.net/1721.1/164731
dc.description.abstractWhile silicon solar cells dominate global photovoltaic energy production, their continued improvement is hindered by the single-junction limit. One potential solution is to use molecular singlet exciton fission to generate two electrons from each absorbed high-energy photon. We demonstrate that the long-standing challenge of coupling molecular excited states to silicon solar cells can be overcome using sequential charge transfer. Combining zinc phthalocyanine, aluminum oxide, and a shallow junction crystalline silicon microwire solar cell, the peak charge generation efficiency per photon absorbed in tetracene is (138% ± 6%), comfortably surpassing the quantum efficiency limit for conventional silicon solar cells and establishing a new, scalable approach to low-cost, high-efficiency photovoltaics.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/j.joule.2025.101965en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceElsevier BVen_US
dc.titleExciton fission enhanced silicon solar cellen_US
dc.typeArticleen_US
dc.identifier.citationNagaya, Narumi, Lee, Kangmin, Perkinson, Collin F, Li, Aaron, Lee, Youri et al. 2025. "Exciton fission enhanced silicon solar cell." Joule, 9 (7).
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.relation.journalJouleen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2026-02-04T18:23:31Z
dspace.orderedauthorsNagaya, N; Lee, K; Perkinson, CF; Li, A; Lee, Y; Zhong, X; Lee, S; Weisburn, LP; Wang, JZ; Baikie, TK; Bawendi, MG; Van Voorhis, T; Tisdale, WA; Kahn, A; Seo, K; Baldo, MAen_US
dspace.date.submission2026-02-04T18:23:33Z
mit.journal.volume9en_US
mit.journal.issue7en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record