MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time

Author(s)
Dong, Sally; Gao, Yu; Goranci, Gramoz; Lee, Yin Tat; Sachdeva, Sushant; Peng, Richard; Ye, Guanghao; ... Show more Show less
Thumbnail
Download3744639.pdf (952.6Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We present a nearly-linear time algorithm for finding a minimum-cost flow in planar graphs with polynomially bounded integer costs and capacities. The previous fastest algorithm for this problem is based on interior point methods (IPMs) and works for general sparse graphs in O(n1.5 polylog n)) time [Daitch-Spielman, STOC'. Intuitively, ?(n1.5) is a natural runtime barrier for IPM-based methods, since they require ?n iterations, each routing a possibly-dense electrical flow. To break this barrier, we develop a new implicit representation for flows based on generalized nested dissection [Lipton-Rose-Tarjan, SINUM'79] and approximate Schur complements [Kyng-Sachdeva, FOCS'. This implicit representation permits us to design a data structure to route an electrical flow with sparse demands in roughly ?n update time, resulting in a total runtime of O(n polylog n). Our results immediately extend to all families of separable graphs.
Date issued
2025-07-26
URI
https://hdl.handle.net/1721.1/164804
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Journal of the ACM
Publisher
ACM
Citation
Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Sushant Sachdeva, Richard Peng, and Guanghao Ye. 2025. Nested Dissection Meets IPMs: Planar Min-Cost Flow in Nearly-Linear Time. J. ACM 72, 4, Article 27 (August 2025), 75 pages.
Version: Final published version
ISSN
0004-5411

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.