MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data

Author(s)
Mitsos, Alexander; Melas, Ioannis N.; Siminelakis, Paraskeuas; Chairakaki, Aikaterini D.; Saez-Rodriguez, Julio; Alexopoulos, Leonidas G.; ... Show more Show less
Thumbnail
DownloadMitsos-et-al-PLoS-Comp-Bio-Final.pdf (2.930Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Understanding the mechanisms of cell function and drug action is a major endeavor in the pharmaceutical industry. Drug effects are governed by the intrinsic properties of the drug (i.e., selectivity and potency) and the specific signaling transduction network of the host (i.e., normal vs. diseased cells). Here, we describe an unbiased, phosphoproteomicbased approach to identify drug effects by monitoring drug-induced topology alterations. With the proposed method, drug effects are investigated under several conditions on a cell-type specific signaling network. First, starting with a generic pathway made of logical gates, we build a cell-type specific map by constraining it to fit 13 key phopshoprotein signals under 55 experimental cases. Fitting is performed via a formulation as an Integer Linear Program (ILP) and solution by standard ILP solvers; a procedure that drastically outperforms previous fitting schemes. Then, knowing the cell topology, we monitor the same key phopshoprotein signals under the presence of drug and cytokines and we re-optimize the specific map to reveal the drug-induced topology alterations. To prove our case, we make a pathway map for the hepatocytic cell line HepG2 and we evaluate the effects of 4 drugs: 3 selective inhibitors for the Epidermal Growth Factor Receptor (EGFR) and a non selective drug. We confirm effects easily predictable from the drugs’ main target (i.e. EGFR inhibitors blocks the EGFR pathway) but we also uncover unanticipated effects due to either drug promiscuity or the cell’s specific topology. An interesting finding is that the selective EGFR inhibitor Gefitinib is able to inhibit signaling downstream the Interleukin-1alpha (IL-1α) pathway; an effect that cannot be extracted from binding affinity based approaches. Our method represents an unbiased approach to identify drug effects on a small to medium size pathways and is scalable to larger topologies with any type of signaling perturbations (small molecules, 3 RNAi etc). The method is a step towards a better picture of drug effects in pathways, the cornerstone in identifying the mechanisms of drug efficacy and toxicity.
Date issued
2009-10
URI
http://hdl.handle.net/1721.1/49845
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
PLoS Computational Biology
Publisher
Public Library of Science
Citation
Mitsos, Alexander, et al. "Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data." PLoS Computational Biology 5(12): e1000591.
Version: Author's final manuscript
ISSN
1553-7358
1553-734X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.