Show simple item record

dc.contributor.authorSmith, Anne C.
dc.contributor.authorScalon, Joao D.
dc.contributor.authorWirth, Sylvia
dc.contributor.authorYanike, Marianna
dc.contributor.authorSuzuki, Wendy A.
dc.contributor.authorBrown, Emery N.
dc.date.accessioned2009-12-28T14:15:43Z
dc.date.available2009-12-28T14:15:43Z
dc.date.issued2010-01
dc.date.submitted2009-03
dc.identifier.issn1687-5273
dc.identifier.urihttp://hdl.handle.net/1721.1/50244
dc.description.abstractThe accurate characterization of spike firing rates including the determination of when changes in activity occur is a fundamental issue in the analysis of neurophysiological data. Here we describe a state-space model for estimating the spike rate function that provides a maximum likelihood estimate of the spike rate, model goodness-of-fit assessments, as well as confidence intervals for the spike rate function and any other associated quantities of interest. Using simulated spike data, we first compare the performance of the state-space approach with that of Bayesian adaptive regression splines (BARS) and a simple cubic spline smoothing algorithm. We show that the state-space model is computationally efficient and comparable with other spline approaches. Our results suggest both a theoretically sound and practical approach for estimating spike rate functions that is applicable to a wide range of neurophysiological data.en
dc.description.sponsorshipJohn Merck Funden
dc.description.sponsorshipMcKnight Foundationen
dc.description.sponsorshipNIMHen
dc.description.sponsorshipNIDAen
dc.language.isoen_US
dc.publisherHindawi Publishingen
dc.relation.isversionofhttp://dx.doi.org/10.1155/2010/426539en
dc.rightsCreative Commons Attributionen
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en
dc.sourceHindawien
dc.titleState-Space Algorithms for Estimating Spike Rate Functionsen
dc.typeArticleen
dc.identifier.citationAnne C. Smith, Joao D. Scalon, Sylvia Wirth, Marianna Yanike, Wendy A. Suzuki, and Emery N. Brown, “State-Space Algorithms for Estimating Spike Rate Functions,” Computational Intelligence and Neuroscience, vol. 2010, Article ID 426539, 14 pages, 2010. doi:10.1155/2010/426539en
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.approverBrown, Emery N.
dc.contributor.mitauthorBrown, Emery N.
dc.relation.journalComputational Intelligence and Neuroscienceen
dc.eprint.versionFinal published versionen
dc.type.urihttp://purl.org/eprint/type/JournalArticleen
eprint.statushttp://purl.org/eprint/status/PeerRevieweden
eprint.grantNumberDA01564en
eprint.grantNumberMH58847en
eprint.grantNumberDP1 OD003646-01en
eprint.grantNumberMH071847en
eprint.grantNumberMH61637en
eprint.grantNumberMH59733en
eprint.grantNumberDA015644en
dspace.orderedauthorsSmith, Anne C.; Scalon, Joao D.; Wirth, Sylvia; Yanike, Marianna; Suzuki, Wendy A.; Brown, Emery N.en
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licensePUBLISHER_POLICYen
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record