MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function

Author(s)
Tao, Jifang; Hu, Keping; Chang, Qiang; Wu, Hao; Sherman, Nicholas E.; Martinowich, Keri; Klose, Robert J.; Schanen, Carolyn; Jaenisch, Rudolf; Wang, Weidong; Sun, Yi Eve; ... Show more Show less
Thumbnail
DownloadTao-2009-Phosphorylation of M.pdf (814.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Mutations of MECP2 (Methyl-CpG Binding Protein 2) cause Rett syndrome. As a chromatin-associated multifunctional protein, how MeCP2 integrates external signals and regulates neuronal function remain unclear. Although neuronal activity-induced phosphorylation of MeCP2 at serine 421 (S421) has been reported, the full spectrum of MeCP2 phosphorylation together with the in vivo function of such modifications are yet to be revealed. Here, we report the identification of several MeCP2 phosphorylation sites in normal and epileptic brains from multiple species. We demonstrate that serine 80 (S80) phosphorylation of MeCP2 is critical as its mutation into alanine (S80A) in transgenic knock-in mice leads to locomotor deficits. S80A mutation attenuates MeCP2 chromatin association at several gene promoters in resting neurons and leads to transcription changes of a small number of genes. Calcium influx in neurons causes dephosphorylation at S80, potentially contributing to its dissociation from the chromatin. We postulate that phosphorylation of MeCP2 modulates its dynamic function in neurons transiting between resting and active states within neural circuits that underlie behaviors.
Date issued
2009-02
URI
http://hdl.handle.net/1721.1/50246
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
National Academy of Sciences
Citation
Tao, Jifang et al. “Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function.” Proceedings of the National Academy of Sciences 106.12 (2009): 4882-4887.
Version: Final published version
ISSN
0027-8424

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.