MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Brief announcement: Minimum spanning trees and cone-based topology control

Author(s)
Cornejo Collado, Alex; Lynch, Nancy Ann
Thumbnail
DownloadLynch_Minimum Spanning.pdf (133.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Consider a setting where nodes can vary their transmission power thereby changing the network topology, the goal of topology control is to reduce the transmission power while ensuring the communication graph remains connected. Wattenhofer et al. [6] introduced the distributed cone-based topology control algorithm with parameter α (CBTC(α)) and proved it correct if α ≤ 2π/3. Li et al. [4] proposed performing asymmetric edge removal or increasing α to 5π/6, and proved that when applied separately these minimizations preserve connectivity. Bahramgiri et al. [1] proved that when α ≤ 2π/3 it was possible to extend the algorithm to work in three dimensions and described a variation to preserve k-connectivity. We give a short self-contained proof that when α ≤ 2π/3 the minimum spanning tree is contained in the graph produced by CBTC(α). Its interesting to note that by comparison, other popular topology control algorithms are variations of the Gabriel Graph [5], the Relative Neighbor Graph [2] or the Delaunay Triangulation [3]; all of which are structures known to contain the minimum spanning tree. The proof is essentially an application of a lemma proved by Yao [7]. As a consequence of this proof we get as corollaries new short proofs of some of the main results of Wattenhofer et al. [6], Li et al. [4] and Bahramgiri et al. [1]. (1) When α ≤ 2π/3 the algorithm CBTC(α) preserves connectivity [6]. (2) The asymmetric edge removal operation preserves connectivity [4]. (3) The algorithm can be extended to three dimensions [1], and generally to n-dimensional space.
Date issued
2009
URI
http://hdl.handle.net/1721.1/51001
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 28th ACM Symposium on Principles of Distributed Computing
Publisher
Association for Computing Machinery
Citation
Cornejo, Alejandro, and Nancy Lynch. “Brief announcement: minimum spanning trees and cone-based topology control.” Proceedings of the 28th ACM symposium on Principles of distributed computing. Calgary, AB, Canada: ACM, 2009. 296-297.
Version: Author's final manuscript
ISBN
978-1-60558-396-9

Collections
  • Journal Articles and Proceedings
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.