MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys

Author(s)
Trelewicz, Jason R.; Schuh, Christopher A.
Thumbnail
DownloadTrelewicz-2009-Grain boundary segre.pdf (1.443Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A free-energy function for binary polycrystalline solid solutions is developed based on pairwise nearest-neighbor interactions. The model permits intergranular regions to exhibit unique energetics and compositions from grain interiors, under the assumption of random site occupation in each region. For a given composition, there is an equilibrium grain size, and the alloy configuration in equilibrium generally involves solute segregation. The present approach reduces to a standard model of grain boundary segregation in the limit of infinite grain size, but substantially generalizes prior thermodynamic models for nanoscale alloy systems. In particular, the present model allows consideration of weakly segregating systems, systems away from the dilute limit, and is derived for structures of arbitrary dimensionality. A series of solutions for the equilibrium alloy configuration and grain size are also presented as a function of simple input parameters, including temperature, alloy interaction energies, and component grain boundary energies.
Date issued
2009-03
URI
http://hdl.handle.net/1721.1/51036
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Physical Review B
Publisher
American Physical Society
Citation
Trelewicz, Jason R., and Christopher A. Schuh. “Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys.” Physical Review B 79.9 (2009): 094112. (C) 2010 The American Physical Society.
Version: Final published version
ISSN
1550-235X
1098-0121

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.