MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast Fourier transform telescope

Author(s)
Tegmark, Max Erik; Zaldarriaga, Matias, 1971-
Thumbnail
DownloadTegmark-2009-Fast Fourier transfo.pdf (950.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore’s law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for largearea surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog[subscript 2]N rather than N[superscript 2]) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.
Date issued
2009-04
URI
http://hdl.handle.net/1721.1/51042
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Physical Review D
Publisher
American Physical Society
Citation
Tegmark, Max , and Matias Zaldarriaga. “Fast Fourier transform telescope.” Physical Review D 79.8 (2009): 083530. (C) 2010 The American Physical Society.
Version: Final published version
ISSN
1550-2368
1550-7998

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.