Structure and dynamics of vibrated granular chains: Comparison to equilibrium polymers
Author(s)
Safford, Kevin; Kantor, Yacov; Kardar, Mehran; Kudrolli, Arshad
DownloadSafford-2009-Structure and dynami.pdf (235.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We show that the statistical properties of a vibrated granular bead chain are similar to standard models of polymers in equilibrium. Granular chains of length up to N=1024 beads were confined within a circular vibrating bed, and their configurations were imaged. To differentiate the effects of persistence and confinement on the chain, we compared with simulations of both persistent random-walk (RW) and self-avoiding walk (SAW) models. Static properties, such as the radius of gyration and structure factor, are governed for short chains (N≤128) by persistence and can be matched by those of RWs. Self-avoidance and confinement effects are both important for longer chains and the results are well described by equilibrated SAWs. We also find that the collective dynamics of the granular chain is similar to the Rouse model of polymers. In particular, as long as confinement is negligible, the center of mass of the chain diffuses with a diffusion coefficient that scales as 1/N, and the dynamic structure factor decays exponentially in time.
Date issued
2009-06Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Physical Review E
Publisher
American Physical Society
Citation
Safford, Kevin et al. “Structure and dynamics of vibrated granular chains: Comparison to equilibrium polymers.” Physical Review E 79.6 (2009): 061304. (C) 2010 The American Physical Society.
Version: Final published version
ISSN
1550-2376
1539-3755