MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distribution of Thermally Activated Plastic Events in a Flowing Glass

Author(s)
Schuh, Christopher A.; Rodney, David
Thumbnail
DownloadRodney-2009-Distribution of Ther.pdf (743.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The potential energy landscape of a flowing metallic glass is revealed using the activation-relaxation technique. For a two-dimensional Lennard-Jones system initially deformed into a steady-state condition through quasistatic shear, the distribution of activation energies is shown to contain a large fraction of low-energy barriers, consistent with a highly nonequilibrium flow state. The distribution of plastic strains has a fundamentally different shape than that obtained during quasistatic simulations, exhibiting a peak at finite strain and, after elastic unloading, a nonzero mean plastic strain that evidences a polarization of the flow state. No significant correlation is found between the activation energy of a plastic event and its associated plastic strain.
Date issued
2009-06
URI
http://hdl.handle.net/1721.1/51337
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Rodney, David , and Christopher Schuh. “Distribution of Thermally Activated Plastic Events in a Flowing Glass.” Physical Review Letters 102.23 (2009): 235503. (C) 2010 The American Physical Society.
Version: Final published version
ISSN
0031-9007

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.