dc.contributor.author | Nagaj, Daniel | |
dc.contributor.author | Farhi, Edward | |
dc.contributor.author | Goldstone, Jeffrey | |
dc.contributor.author | Shor, Peter W. | |
dc.contributor.author | Sylvester, Igor | |
dc.date.accessioned | 2010-02-03T14:33:46Z | |
dc.date.available | 2010-02-03T14:33:46Z | |
dc.date.issued | 2008-06 | |
dc.date.submitted | 2008-04 | |
dc.identifier.issn | 1550-235X | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/51347 | |
dc.description.abstract | We give a generalization to an infinite tree geometry of Vidal’s infinite time-evolving block decimation (iTEBD) algorithm [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)] for simulating an infinite line of quantum spins. We numerically investigate the quantum Ising model in a transverse field on the Bethe lattice using the matrix product state ansatz. We observe a second order phase transition, with certain key differences from the transverse field Ising model on an infinite spin chain. We also investigate a transverse field Ising model with a specific longitudinal field. When the transverse field is turned off, this model has a highly degenerate ground state as opposed to the pure Ising model whose ground state is only doubly degenerate. | en |
dc.description.sponsorship | National Science Foundation | en |
dc.description.sponsorship | Army Research Office | en |
dc.description.sponsorship | W. M. Keck Foundation Center for Extreme Quantum Information Theory | en |
dc.language.iso | en_US | |
dc.publisher | American Physical Society | en |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevB.77.214431 | en |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en |
dc.source | APS | en |
dc.title | Quantum transverse-field Ising model on an infinite tree from matrix product states | en |
dc.type | Article | en |
dc.identifier.citation | Nagaj, Daniel et al. “Quantum transverse-field Ising model on an infinite tree from matrix product states.” Physical Review B 77.21 (2008): 214431. (C) 2010 The American Physical Society. | en |
dc.contributor.department | Massachusetts Institute of Technology. Center for Theoretical Physics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.contributor.approver | Farhi, Edward | |
dc.contributor.mitauthor | Nagaj, Daniel | |
dc.contributor.mitauthor | Farhi, Edward | |
dc.contributor.mitauthor | Goldstone, Jeffrey | |
dc.contributor.mitauthor | Shor, Peter W. | |
dc.contributor.mitauthor | Sylvester, Igor | |
dc.relation.journal | Physical Review B | en |
dc.eprint.version | Final published version | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en |
eprint.grantNumber | CCF0431787 | en |
eprint.grantNumber | W911NF-04-1- 0216 | en |
dspace.orderedauthors | Nagaj, Daniel; Farhi, Edward; Goldstone, Jeffrey; Shor, Peter; Sylvester, Igor | en |
dc.identifier.orcid | https://orcid.org/0000-0002-7309-8489 | |
dc.identifier.orcid | https://orcid.org/0000-0003-4626-5648 | |
mit.license | PUBLISHER_POLICY | en |
mit.metadata.status | Complete | |